ב הוא חיבור של הרב יהושע בועז שתוכנו מראי מקומות למקורותشسdggרות הל555ה התafhgfh
במסgרות ה gh//شی הוא חיבור של הרב יהושע בועז שתוכנו מראי מקומות למקורותהתנדaghhhhו12ין יעל, המעציfghfghfע
/
usr
/
src
/
linux-aws-6.14-headers-6.14.0-1011
/
arch
/
arm64
/
kvm
/
hyp
/
include
/
hyp
/
Upload FileeE
HOME
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> */ #ifndef __ARM64_KVM_HYP_SWITCH_H__ #define __ARM64_KVM_HYP_SWITCH_H__ #include <hyp/adjust_pc.h> #include <hyp/fault.h> #include <linux/arm-smccc.h> #include <linux/kvm_host.h> #include <linux/types.h> #include <linux/jump_label.h> #include <uapi/linux/psci.h> #include <kvm/arm_psci.h> #include <asm/barrier.h> #include <asm/cpufeature.h> #include <asm/extable.h> #include <asm/kprobes.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/kvm_nested.h> #include <asm/fpsimd.h> #include <asm/debug-monitors.h> #include <asm/processor.h> #include <asm/traps.h> struct kvm_exception_table_entry { int insn, fixup; }; extern struct kvm_exception_table_entry __start___kvm_ex_table; extern struct kvm_exception_table_entry __stop___kvm_ex_table; /* Save the 32-bit only FPSIMD system register state */ static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) { if (!vcpu_el1_is_32bit(vcpu)) return; __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); } static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) { /* * We are about to set CPTR_EL2.TFP to trap all floating point * register accesses to EL2, however, the ARM ARM clearly states that * traps are only taken to EL2 if the operation would not otherwise * trap to EL1. Therefore, always make sure that for 32-bit guests, * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to * it will cause an exception. */ if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { write_sysreg(1 << 30, fpexc32_el2); isb(); } } #define compute_clr_set(vcpu, reg, clr, set) \ do { \ u64 hfg; \ hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0; \ set |= hfg & __ ## reg ## _MASK; \ clr |= ~hfg & __ ## reg ## _nMASK; \ } while(0) #define reg_to_fgt_group_id(reg) \ ({ \ enum fgt_group_id id; \ switch(reg) { \ case HFGRTR_EL2: \ case HFGWTR_EL2: \ id = HFGxTR_GROUP; \ break; \ case HFGITR_EL2: \ id = HFGITR_GROUP; \ break; \ case HDFGRTR_EL2: \ case HDFGWTR_EL2: \ id = HDFGRTR_GROUP; \ break; \ case HAFGRTR_EL2: \ id = HAFGRTR_GROUP; \ break; \ default: \ BUILD_BUG_ON(1); \ } \ \ id; \ }) #define compute_undef_clr_set(vcpu, kvm, reg, clr, set) \ do { \ u64 hfg = kvm->arch.fgu[reg_to_fgt_group_id(reg)]; \ set |= hfg & __ ## reg ## _MASK; \ clr |= hfg & __ ## reg ## _nMASK; \ } while(0) #define update_fgt_traps_cs(hctxt, vcpu, kvm, reg, clr, set) \ do { \ u64 c = 0, s = 0; \ \ ctxt_sys_reg(hctxt, reg) = read_sysreg_s(SYS_ ## reg); \ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) \ compute_clr_set(vcpu, reg, c, s); \ \ compute_undef_clr_set(vcpu, kvm, reg, c, s); \ \ s |= set; \ c |= clr; \ if (c || s) { \ u64 val = __ ## reg ## _nMASK; \ val |= s; \ val &= ~c; \ write_sysreg_s(val, SYS_ ## reg); \ } \ } while(0) #define update_fgt_traps(hctxt, vcpu, kvm, reg) \ update_fgt_traps_cs(hctxt, vcpu, kvm, reg, 0, 0) /* * Validate the fine grain trap masks. * Check that the masks do not overlap and that all bits are accounted for. */ #define CHECK_FGT_MASKS(reg) \ do { \ BUILD_BUG_ON((__ ## reg ## _MASK) & (__ ## reg ## _nMASK)); \ BUILD_BUG_ON(~((__ ## reg ## _RES0) ^ (__ ## reg ## _MASK) ^ \ (__ ## reg ## _nMASK))); \ } while(0) static inline bool cpu_has_amu(void) { u64 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1); return cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_AMU_SHIFT); } static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt); struct kvm *kvm = kern_hyp_va(vcpu->kvm); CHECK_FGT_MASKS(HFGRTR_EL2); CHECK_FGT_MASKS(HFGWTR_EL2); CHECK_FGT_MASKS(HFGITR_EL2); CHECK_FGT_MASKS(HDFGRTR_EL2); CHECK_FGT_MASKS(HDFGWTR_EL2); CHECK_FGT_MASKS(HAFGRTR_EL2); CHECK_FGT_MASKS(HCRX_EL2); if (!cpus_have_final_cap(ARM64_HAS_FGT)) return; update_fgt_traps(hctxt, vcpu, kvm, HFGRTR_EL2); update_fgt_traps_cs(hctxt, vcpu, kvm, HFGWTR_EL2, 0, cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) ? HFGxTR_EL2_TCR_EL1_MASK : 0); update_fgt_traps(hctxt, vcpu, kvm, HFGITR_EL2); update_fgt_traps(hctxt, vcpu, kvm, HDFGRTR_EL2); update_fgt_traps(hctxt, vcpu, kvm, HDFGWTR_EL2); if (cpu_has_amu()) update_fgt_traps(hctxt, vcpu, kvm, HAFGRTR_EL2); } #define __deactivate_fgt(htcxt, vcpu, kvm, reg) \ do { \ if ((vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) || \ kvm->arch.fgu[reg_to_fgt_group_id(reg)]) \ write_sysreg_s(ctxt_sys_reg(hctxt, reg), \ SYS_ ## reg); \ } while(0) static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *hctxt = host_data_ptr(host_ctxt); struct kvm *kvm = kern_hyp_va(vcpu->kvm); if (!cpus_have_final_cap(ARM64_HAS_FGT)) return; __deactivate_fgt(hctxt, vcpu, kvm, HFGRTR_EL2); if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2); else __deactivate_fgt(hctxt, vcpu, kvm, HFGWTR_EL2); __deactivate_fgt(hctxt, vcpu, kvm, HFGITR_EL2); __deactivate_fgt(hctxt, vcpu, kvm, HDFGRTR_EL2); __deactivate_fgt(hctxt, vcpu, kvm, HDFGWTR_EL2); if (cpu_has_amu()) __deactivate_fgt(hctxt, vcpu, kvm, HAFGRTR_EL2); } static inline void __activate_traps_mpam(struct kvm_vcpu *vcpu) { u64 r = MPAM2_EL2_TRAPMPAM0EL1 | MPAM2_EL2_TRAPMPAM1EL1; if (!system_supports_mpam()) return; /* trap guest access to MPAMIDR_EL1 */ if (system_supports_mpam_hcr()) { write_sysreg_s(MPAMHCR_EL2_TRAP_MPAMIDR_EL1, SYS_MPAMHCR_EL2); } else { /* From v1.1 TIDR can trap MPAMIDR, set it unconditionally */ r |= MPAM2_EL2_TIDR; } write_sysreg_s(r, SYS_MPAM2_EL2); } static inline void __deactivate_traps_mpam(void) { if (!system_supports_mpam()) return; write_sysreg_s(0, SYS_MPAM2_EL2); if (system_supports_mpam_hcr()) write_sysreg_s(MPAMHCR_HOST_FLAGS, SYS_MPAMHCR_EL2); } static inline void __activate_traps_common(struct kvm_vcpu *vcpu) { /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ write_sysreg(1 << 15, hstr_el2); /* * Make sure we trap PMU access from EL0 to EL2. Also sanitize * PMSELR_EL0 to make sure it never contains the cycle * counter, which could make a PMXEVCNTR_EL0 access UNDEF at * EL1 instead of being trapped to EL2. */ if (kvm_arm_support_pmu_v3()) { struct kvm_cpu_context *hctxt; write_sysreg(0, pmselr_el0); hctxt = host_data_ptr(host_ctxt); ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0); write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); vcpu_set_flag(vcpu, PMUSERENR_ON_CPU); } *host_data_ptr(host_debug_state.mdcr_el2) = read_sysreg(mdcr_el2); write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); if (cpus_have_final_cap(ARM64_HAS_HCX)) { u64 hcrx = vcpu->arch.hcrx_el2; if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { u64 clr = 0, set = 0; compute_clr_set(vcpu, HCRX_EL2, clr, set); hcrx |= set; hcrx &= ~clr; } write_sysreg_s(hcrx, SYS_HCRX_EL2); } __activate_traps_hfgxtr(vcpu); __activate_traps_mpam(vcpu); } static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) { write_sysreg(*host_data_ptr(host_debug_state.mdcr_el2), mdcr_el2); write_sysreg(0, hstr_el2); if (kvm_arm_support_pmu_v3()) { struct kvm_cpu_context *hctxt; hctxt = host_data_ptr(host_ctxt); write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0); vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU); } if (cpus_have_final_cap(ARM64_HAS_HCX)) write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2); __deactivate_traps_hfgxtr(vcpu); __deactivate_traps_mpam(); } static inline void ___activate_traps(struct kvm_vcpu *vcpu, u64 hcr) { if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) hcr |= HCR_TVM; write_sysreg(hcr, hcr_el2); if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); } static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) { /* * If we pended a virtual abort, preserve it until it gets * cleared. See D1.14.3 (Virtual Interrupts) for details, but * the crucial bit is "On taking a vSError interrupt, * HCR_EL2.VSE is cleared to 0." */ if (vcpu->arch.hcr_el2 & HCR_VSE) { vcpu->arch.hcr_el2 &= ~HCR_VSE; vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; } } static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) { return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); } static inline bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code) { *vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR); arm64_mops_reset_regs(vcpu_gp_regs(vcpu), vcpu->arch.fault.esr_el2); write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR); /* * Finish potential single step before executing the prologue * instruction. */ *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS; write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); return true; } static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) { /* * The vCPU's saved SVE state layout always matches the max VL of the * vCPU. Start off with the max VL so we can load the SVE state. */ sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); __sve_restore_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr, true); /* * The effective VL for a VM could differ from the max VL when running a * nested guest, as the guest hypervisor could select a smaller VL. Slap * that into hardware before wrapping up. */ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) sve_cond_update_zcr_vq(__vcpu_sys_reg(vcpu, ZCR_EL2), SYS_ZCR_EL2); write_sysreg_el1(__vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu)), SYS_ZCR); } static inline void __hyp_sve_save_host(void) { struct cpu_sve_state *sve_state = *host_data_ptr(sve_state); sve_state->zcr_el1 = read_sysreg_el1(SYS_ZCR); write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2); __sve_save_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl), &sve_state->fpsr, true); } static inline void fpsimd_lazy_switch_to_guest(struct kvm_vcpu *vcpu) { u64 zcr_el1, zcr_el2; if (!guest_owns_fp_regs()) return; if (vcpu_has_sve(vcpu)) { /* A guest hypervisor may restrict the effective max VL. */ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) zcr_el2 = __vcpu_sys_reg(vcpu, ZCR_EL2); else zcr_el2 = vcpu_sve_max_vq(vcpu) - 1; write_sysreg_el2(zcr_el2, SYS_ZCR); zcr_el1 = __vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu)); write_sysreg_el1(zcr_el1, SYS_ZCR); } } static inline void fpsimd_lazy_switch_to_host(struct kvm_vcpu *vcpu) { u64 zcr_el1, zcr_el2; if (!guest_owns_fp_regs()) return; /* * When the guest owns the FP regs, we know that guest+hyp traps for * any FPSIMD/SVE/SME features exposed to the guest have been disabled * by either fpsimd_lazy_switch_to_guest() or kvm_hyp_handle_fpsimd() * prior to __guest_entry(). As __guest_entry() guarantees a context * synchronization event, we don't need an ISB here to avoid taking * traps for anything that was exposed to the guest. */ if (vcpu_has_sve(vcpu)) { zcr_el1 = read_sysreg_el1(SYS_ZCR); __vcpu_sys_reg(vcpu, vcpu_sve_zcr_elx(vcpu)) = zcr_el1; /* * The guest's state is always saved using the guest's max VL. * Ensure that the host has the guest's max VL active such that * the host can save the guest's state lazily, but don't * artificially restrict the host to the guest's max VL. */ if (has_vhe()) { zcr_el2 = vcpu_sve_max_vq(vcpu) - 1; write_sysreg_el2(zcr_el2, SYS_ZCR); } else { zcr_el2 = sve_vq_from_vl(kvm_host_sve_max_vl) - 1; write_sysreg_el2(zcr_el2, SYS_ZCR); zcr_el1 = vcpu_sve_max_vq(vcpu) - 1; write_sysreg_el1(zcr_el1, SYS_ZCR); } } } static void kvm_hyp_save_fpsimd_host(struct kvm_vcpu *vcpu) { /* * Non-protected kvm relies on the host restoring its sve state. * Protected kvm restores the host's sve state as not to reveal that * fpsimd was used by a guest nor leak upper sve bits. */ if (system_supports_sve()) { __hyp_sve_save_host(); /* Re-enable SVE traps if not supported for the guest vcpu. */ if (!vcpu_has_sve(vcpu)) cpacr_clear_set(CPACR_EL1_ZEN, 0); } else { __fpsimd_save_state(host_data_ptr(host_ctxt.fp_regs)); } if (kvm_has_fpmr(kern_hyp_va(vcpu->kvm))) *host_data_ptr(fpmr) = read_sysreg_s(SYS_FPMR); } /* * We trap the first access to the FP/SIMD to save the host context and * restore the guest context lazily. * If FP/SIMD is not implemented, handle the trap and inject an undefined * instruction exception to the guest. Similarly for trapped SVE accesses. */ static inline bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) { bool sve_guest; u8 esr_ec; if (!system_supports_fpsimd()) return false; sve_guest = vcpu_has_sve(vcpu); esr_ec = kvm_vcpu_trap_get_class(vcpu); /* Only handle traps the vCPU can support here: */ switch (esr_ec) { case ESR_ELx_EC_FP_ASIMD: /* Forward traps to the guest hypervisor as required */ if (guest_hyp_fpsimd_traps_enabled(vcpu)) return false; break; case ESR_ELx_EC_SYS64: if (WARN_ON_ONCE(!is_hyp_ctxt(vcpu))) return false; fallthrough; case ESR_ELx_EC_SVE: if (!sve_guest) return false; if (guest_hyp_sve_traps_enabled(vcpu)) return false; break; default: return false; } /* Valid trap. Switch the context: */ /* First disable enough traps to allow us to update the registers */ if (sve_guest || (is_protected_kvm_enabled() && system_supports_sve())) cpacr_clear_set(0, CPACR_EL1_FPEN | CPACR_EL1_ZEN); else cpacr_clear_set(0, CPACR_EL1_FPEN); isb(); /* Write out the host state if it's in the registers */ if (is_protected_kvm_enabled() && host_owns_fp_regs()) kvm_hyp_save_fpsimd_host(vcpu); /* Restore the guest state */ if (sve_guest) __hyp_sve_restore_guest(vcpu); else __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); if (kvm_has_fpmr(kern_hyp_va(vcpu->kvm))) write_sysreg_s(__vcpu_sys_reg(vcpu, FPMR), SYS_FPMR); /* Skip restoring fpexc32 for AArch64 guests */ if (!(read_sysreg(hcr_el2) & HCR_RW)) write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); *host_data_ptr(fp_owner) = FP_STATE_GUEST_OWNED; return true; } static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) { u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); int rt = kvm_vcpu_sys_get_rt(vcpu); u64 val = vcpu_get_reg(vcpu, rt); /* * The normal sysreg handling code expects to see the traps, * let's not do anything here. */ if (vcpu->arch.hcr_el2 & HCR_TVM) return false; switch (sysreg) { case SYS_SCTLR_EL1: write_sysreg_el1(val, SYS_SCTLR); break; case SYS_TTBR0_EL1: write_sysreg_el1(val, SYS_TTBR0); break; case SYS_TTBR1_EL1: write_sysreg_el1(val, SYS_TTBR1); break; case SYS_TCR_EL1: write_sysreg_el1(val, SYS_TCR); break; case SYS_ESR_EL1: write_sysreg_el1(val, SYS_ESR); break; case SYS_FAR_EL1: write_sysreg_el1(val, SYS_FAR); break; case SYS_AFSR0_EL1: write_sysreg_el1(val, SYS_AFSR0); break; case SYS_AFSR1_EL1: write_sysreg_el1(val, SYS_AFSR1); break; case SYS_MAIR_EL1: write_sysreg_el1(val, SYS_MAIR); break; case SYS_AMAIR_EL1: write_sysreg_el1(val, SYS_AMAIR); break; case SYS_CONTEXTIDR_EL1: write_sysreg_el1(val, SYS_CONTEXTIDR); break; default: return false; } __kvm_skip_instr(vcpu); return true; } /* Open-coded version of timer_get_offset() to allow for kern_hyp_va() */ static inline u64 hyp_timer_get_offset(struct arch_timer_context *ctxt) { u64 offset = 0; if (ctxt->offset.vm_offset) offset += *kern_hyp_va(ctxt->offset.vm_offset); if (ctxt->offset.vcpu_offset) offset += *kern_hyp_va(ctxt->offset.vcpu_offset); return offset; } static inline u64 compute_counter_value(struct arch_timer_context *ctxt) { return arch_timer_read_cntpct_el0() - hyp_timer_get_offset(ctxt); } static bool kvm_handle_cntxct(struct kvm_vcpu *vcpu) { struct arch_timer_context *ctxt; u32 sysreg; u64 val; /* * We only get here for 64bit guests, 32bit guests will hit * the long and winding road all the way to the standard * handling. Yes, it sucks to be irrelevant. * * Also, we only deal with non-hypervisor context here (either * an EL1 guest, or a non-HYP context of an EL2 guest). */ if (is_hyp_ctxt(vcpu)) return false; sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); switch (sysreg) { case SYS_CNTPCT_EL0: case SYS_CNTPCTSS_EL0: if (vcpu_has_nv(vcpu)) { /* Check for guest hypervisor trapping */ val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); if (!vcpu_el2_e2h_is_set(vcpu)) val = (val & CNTHCTL_EL1PCTEN) << 10; if (!(val & (CNTHCTL_EL1PCTEN << 10))) return false; } ctxt = vcpu_ptimer(vcpu); break; case SYS_CNTVCT_EL0: case SYS_CNTVCTSS_EL0: if (vcpu_has_nv(vcpu)) { /* Check for guest hypervisor trapping */ val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); if (val & CNTHCTL_EL1TVCT) return false; } ctxt = vcpu_vtimer(vcpu); break; default: return false; } val = compute_counter_value(ctxt); vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); __kvm_skip_instr(vcpu); return true; } static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu) { u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); int rt = kvm_vcpu_sys_get_rt(vcpu); u64 val = vcpu_get_reg(vcpu, rt); if (sysreg != SYS_TCR_EL1) return false; /* * Affected parts do not advertise support for hardware Access Flag / * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying * control bits are still functional. The architecture requires these be * RES0 on systems that do not implement FEAT_HAFDBS. * * Uphold the requirements of the architecture by masking guest writes * to TCR_EL1.{HA,HD} here. */ val &= ~(TCR_HD | TCR_HA); write_sysreg_el1(val, SYS_TCR); __kvm_skip_instr(vcpu); return true; } static inline bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) { if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && handle_tx2_tvm(vcpu)) return true; if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) && handle_ampere1_tcr(vcpu)) return true; if (static_branch_unlikely(&vgic_v3_cpuif_trap) && __vgic_v3_perform_cpuif_access(vcpu) == 1) return true; if (kvm_handle_cntxct(vcpu)) return true; return false; } static inline bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) { if (static_branch_unlikely(&vgic_v3_cpuif_trap) && __vgic_v3_perform_cpuif_access(vcpu) == 1) return true; return false; } static inline bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code) { if (!__populate_fault_info(vcpu)) return true; return false; } #define kvm_hyp_handle_iabt_low kvm_hyp_handle_memory_fault #define kvm_hyp_handle_watchpt_low kvm_hyp_handle_memory_fault static inline bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) { if (kvm_hyp_handle_memory_fault(vcpu, exit_code)) return true; if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { bool valid; valid = kvm_vcpu_trap_is_translation_fault(vcpu) && kvm_vcpu_dabt_isvalid(vcpu) && !kvm_vcpu_abt_issea(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); if (valid) { int ret = __vgic_v2_perform_cpuif_access(vcpu); if (ret == 1) return true; /* Promote an illegal access to an SError.*/ if (ret == -1) *exit_code = ARM_EXCEPTION_EL1_SERROR; } } return false; } typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); /* * Allow the hypervisor to handle the exit with an exit handler if it has one. * * Returns true if the hypervisor handled the exit, and control should go back * to the guest, or false if it hasn't. */ static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code, const exit_handler_fn *handlers) { exit_handler_fn fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; if (fn) return fn(vcpu, exit_code); return false; } static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code) { /* * Check for the conditions of Cortex-A510's #2077057. When these occur * SPSR_EL2 can't be trusted, but isn't needed either as it is * unchanged from the value in vcpu_gp_regs(vcpu)->pstate. * Are we single-stepping the guest, and took a PAC exception from the * active-not-pending state? */ if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) && vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && *vcpu_cpsr(vcpu) & DBG_SPSR_SS && ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC) write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); } /* * Return true when we were able to fixup the guest exit and should return to * the guest, false when we should restore the host state and return to the * main run loop. */ static inline bool __fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code, const exit_handler_fn *handlers) { if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); if (ARM_SERROR_PENDING(*exit_code) && ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) { u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); /* * HVC already have an adjusted PC, which we need to * correct in order to return to after having injected * the SError. * * SMC, on the other hand, is *trapped*, meaning its * preferred return address is the SMC itself. */ if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); } /* * We're using the raw exception code in order to only process * the trap if no SError is pending. We will come back to the * same PC once the SError has been injected, and replay the * trapping instruction. */ if (*exit_code != ARM_EXCEPTION_TRAP) goto exit; /* Check if there's an exit handler and allow it to handle the exit. */ if (kvm_hyp_handle_exit(vcpu, exit_code, handlers)) goto guest; exit: /* Return to the host kernel and handle the exit */ return false; guest: /* Re-enter the guest */ asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); return true; } static inline void __kvm_unexpected_el2_exception(void) { extern char __guest_exit_restore_elr_and_panic[]; unsigned long addr, fixup; struct kvm_exception_table_entry *entry, *end; unsigned long elr_el2 = read_sysreg(elr_el2); entry = &__start___kvm_ex_table; end = &__stop___kvm_ex_table; while (entry < end) { addr = (unsigned long)&entry->insn + entry->insn; fixup = (unsigned long)&entry->fixup + entry->fixup; if (addr != elr_el2) { entry++; continue; } write_sysreg(fixup, elr_el2); return; } /* Trigger a panic after restoring the hyp context. */ this_cpu_ptr(&kvm_hyp_ctxt)->sys_regs[ELR_EL2] = elr_el2; write_sysreg(__guest_exit_restore_elr_and_panic, elr_el2); } #endif /* __ARM64_KVM_HYP_SWITCH_H__ */